Bowes Cotherstone Federation

Contents:

Rationale
Early Years Foundation Stage Long Term Planning
Outdoor Learning
Calculation Policy
Vocabulary Progression
Progression Documentation

Mathematics
 Cotherstone Prisnary School

At Cotherstone, we are currently on a 'Mastery Journey' to support a long-term, secure and adaptable approach to mathematics teaching, which supports learners to become resilient, working efficiently by making links between concepts and relationships. Our teaching is supported by the "The Big 5 ideas" based on the NCETM Maths Mastery training we are currently taking part in our fourth year within an inter-school Teacher Work Group.

We are entering our first year of the NCETM Mastering Number to develop fluency in number in Early Years/Key Stage One to secure firm foundations in the development of good number sense.

Rationale

At Cotherstone we believe children learn best by having opportunities to revisit previous learning. In Maths, lessons are sequenced to build knowledge, skills and vocabulary where we recognise prior learning and build on it with memorable learning experiences and provide targeted support where necessary. Each lesson is planned to include the development of quick recall of number facts underpinned by strong basic skills and an in-depth focused mastery lesson developing knowledge of concepts and procedures.
We aim to provide a high-quality mathematics education with a mastery approach so that all children:

- become fluent in the fundamentals of mathematics;
- reason mathematically;
- can solve problems by applying their mathematics knowledge and skills.
- can become confident, curious, happy, resilient and proactive learners.
- can reach their full potential.

Rationale

We believe the teaching of mathematics is underpinned by the following aims:

- Children can enjoy maths and realise that everyone can succeed in this subject.
- Basic number facts are learnt so children can work quickly and accurately.
- To develop conceptual understanding by using models, pictorials and concrete resources so that children understand the mathematics that they are learning and are not just taught 'tricks'.
- To highlight and utilise relationships between concepts and procedures.
- To encourage mathematical reasoning by following lines of enquiry, generalising and justifying using mathematical language.
- To apply mathematical understanding to problem solving by breaking down problems into simpler steps and persevering in seeking solutions using a range of strategies.
- To develop resilient children who are confident and enthused about mathematics who understand that mistakes are part of learning.
- To provide 'purposeful maths' through application of mathematical skills and knowledge to the world around them.
- To recognise prior learning and build on it with memorable learning experiences, providing targeted support where necessary.

Rationale

At Cotherstone Maths is taught daily as a discrete lesson.
Discrete Arithmetic sessions are built daily into the school day with EYFS/KS1 focusing on the NCETM Mastering Number work for 10-15 minutes. Key Stage Two have a 15 minute arithmetic slot timetabled into the morning which involves practice of key maths skills. This either involves completing a 'Tough Ten/Daily 10/Flashback 4', Times Tables practice on Times Tables Rockstars/Top Marks or mathematical games involving arithmetic work.

Maths is also embedded throughout other areas of the curriculum (where appropriate). Morning starter time is dedicated to Maths at various points in the week. This time may be used to revisit prior learning, embedding key maths skills, arithmetic, problem solving and reasoning time or real-life maths work.

Learning is sequenced to build on knowledge, skills and vocabulary. Mental maths skills are practised daily for pupils to develop fluency to become efficient in both new and previous learning. Teachers use Flash Back 4 resources to recap previous Maths topics. Previous learning is recapped within the starter of lessons.
A carefully planned learning journey of small steps is taken to ensure that all children can master concepts before moving on. Time is taken to embed these skills through the sequence of lessons.
Lesson design ensures that the 3 aims of the National Curriculum are covered; fluency, reasoning and problem solving. All staff provide ensure Quality First Teaching of Maths.

Good subject expertise allows the intentions of our Mathematics curriculum to be executed successfully. As a school we are currently enrolled within the fourth year of our NCETM Maths Mastery Programme, which allows two of our teachers to take part in a Teacher Research Group once per half term to share examples of good practice. This good practice is then shared between all staff and CPD is used to inform teaching and learning across school.

Teaching for Mastery- our approach

Rationale

We follow White Rose Maths scheme of learning for the small steps to ensure coverage and progression across year groups. However, staff have several materials to refer to for short-term planning including White Rose Maths, NRICH, Classroom Secrets, Deeping Understanding, Busy Ants and NCETM Teaching for Mastery. These are used across school allowing for children to be exposed to a variety of different representations and problems.

Key Stage One also utilise 'Primary Stars Education’ for their Maths planning/lesson resources. This allows them to vary their Maths lessons to worksheet based, group, practical or challenge activities.

Activities in the EYFS develop knowledge and skills of key learning and allow children to problem solve and reason from an early age. Staff use the outdoors to enrich the Maths curriculum for EYFS and beyond. We use White Rose Maths scheme in EYFS.
The use of 'Tuff Trays' is adopted within EYFS/KS1, teachers and staff plan exciting, engaging activities for children to complete either independently/in small groups or as part of a directed session with an adult. Children enjoy these mathematical opportunities.

At Cotherstone we believe that outdoor learning provides a wide range of benefits to childrens wellbeing and learning. Outdoor learning is used throughout the school in maths lessons to provide memorable learning experiences for our children whilst learning key mathematical topics. As research suggests click here children have increased motivation and happier whilst being outdoors. Outdoor learning in maths lends itself to a wide range of activities to enhance the teaching and learning of our maths topics. It also helps team work and resilience.

Rationale

Summative assessments are completed at least once per term. End of unit assessments are used to address gaps and to inform teachers planning. Formative assessment focuses on mini-plenaries and the ability to demonstrate understanding through reasoning and problem solving. Ongoing feedback is given in lessons and pupils are encouraged to self and peer assess Maths work.

There is coherent progression seen in planning within each unit to ensure learning is sequential and builds on previous knowledge, skills and vocabulary.

Rationale

-Mathematical vocabulary appropriate to the progression of knowledge and skills is referred to throughout lessons and is discussed at the start of the lesson to ensure understanding.
-Children are given daily opportunities to reason and solve problems.
-Mathematical discussion is essential to our learning and within lessons children have time for this to develop their learning and resilience in problem solving and reasoning.
-Teachers develop fluency through practising key mathematical skills within an arithmetic part of the lesson as well as in Morning Starter time.
-Times Tables Rockstars is used throughout the school to develop fluency in Times Tables.
-Teachers find opportunities to apply Mathematics skills across the curriculum, for example, using graphs in Science, counting or measuring distance in PE.
-Using real life Maths is carefully planned for throughout the school.
-Teachers plan outdoor learning lessons into their planning sequence for each unit which provides memorable learning experiences for all children.

Rationale

The impact of our curriculum is that children:

- Develop a love of maths
- Become fluent, competent and efficient mathematicians.
- Develop the ability to reason and problem solve, often using more than one approach
- Develop skills to use maths in real life
- Gain knowledge and quick retrieval of basic number facts
- Are able to learn from mistakes and are resilient
- Develop a responsibility for making choices and decisions
- Make good or better progress

Long Term Planning

Books are used to enhance our EYFS Maths curriculum.

Where's My Teddylit's The Bear - Jez Alborough
The Bear In The Cave - Michael Rosen
Peace At Last- - Jill Murphy
Seaweed Soup - Sturt J Murphy
Clean Up Everboody - Stacey Sparks
Beep Beep Vroom Vroom - Stuart J Murphy
The Button Box - Margarette S Reid.
Duck In the Truck - Jez Alborough
Dear Zoo - Rod Campbell
Mr Big - Ed Vere
Naughty Bus - Jan Oke
Crash Boom - Robbie R Harris
A A New House For Mouse - Petr Horacek
The Right Place for Albert - Daphne Skinner

Opportunities for Maths learning is planned into the various areas of the provision.

EyFS

Opportunities for Maths learning is planned into the various areas of the provision.

Our EYFS Mastering Number Journcy

Subitising
 Cardinality, Ordinality and counting
 Composition
 Comparison

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Pupils will build on previous their home and nursery env develop their subitising and explore the composition of begin to compare sets of ob comparison.	xperiences of number from nments, and further ounting skills. They will mbers within 5 . They will cts and use the language of	Pupils will continue to develop their subitising and counting skills and explore the composition of numbers within and beyond 5 . They will begin to identify when two sets are equal or unequal and connect two equal groups to doubles. They will begin to connect quantities to numerals.		Pupils will consolidate their counting skills, counting to larger numbers and developing a wider range of counting strategies. They will secure knowledge of number facts through varied practice.	
-Subitise 3 and 4 -Counting sequences/ 1-1 correspondence -Composition of number 4 -All numbers are made of 1s -Compare sets by looking and language more than/fewer than	-Subitise 5 -Explore cardinality of 5 - Begin to count beyond 5 -Explore concept of wholes and parts -Composition of 5 -Compare sets by looking/subitising and matching	-Subitise 5 continued -Explore patterns of number beyond 5 -Develop verbal counting, 20 and beyond -Use fingers to represent quantities between 5-10 -Composition of 5/ hidden/missing parts -Compare sets and explore equal/unequal	-Explore un/symmetrical patterns -Consolidate cardinality within 10 -Familiarise pattern to 20 -Explore composition of odd and even numbers -Even numbers/doubles -Composition of numbers within 10 -Reason with 'howmanyness' of numbers	-Subitise numbers in different patterns -Subitise structured/unstructured within 10 -Appropriate to count/subitise -Develop verbal counting, 20 and beyond -Composition of 10 -Order sets of objects - Understand ordinal system	Consolidation of all concepts with a variety of contexts

EyFS Vocabulary

Key Language for Teachers

Rose
Matths

Cardinal - The number that indicates how many there are in a set.

Classification - The identification of an object by specific attributes, such as colour, texture, shape or size.

Conservation (of number) - The recognition that the number stays the same if none have been added or taken away.

Numeral - The written symbol for a number; e.g. $3,2,1$

Ordinal - A number denoting the position in a sequence e.g. ${ }^{1 \text { st }}, 2^{\text {nd }}, 3^{\text {rd }}$, etc or page 1 , page 2 , page 3 ...

Partition - Separate a set into two or more subsets e.g. Partition a set of socks into plain and patterned.

Subitise - Instantly recognise a small quantity,
without having to count how many there are.
Number - Number can be:

- a count of a collection of items e.g. three boxes,
- a measure e.g. of length or weight, or
- a label e.g. the number 17 bus

Quantity - The amount you have of something e.g. a cup of flour, three boxes, half an hour.

Long Term Plan- Year 1

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7 Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{aligned} & \frac{c}{E} \\ & \frac{1}{\frac{3}{4}} \end{aligned}$	Number Place value (within 10)					Number Addition and subtraction (within 10)					$\begin{aligned} & \frac{6}{5} \\ & \frac{0}{5} \\ & \frac{0}{6} \\ & \frac{0}{5} \end{aligned}$
$\begin{aligned} & \text { 이 } \\ & \text { 言 } \end{aligned}$	Nümber Place value (within 20)			Number Addition and subtraction (within 20)			Number Place value (within 50)	Measurement Length and height		Measurement Mass and volume	
$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{~}} \\ & \stackrel{1}{\varepsilon} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	Number Multiplication and division			Number Fractions			Number Place value (within 100)	Measurement Time			$\begin{aligned} & \text { ㄷ } \\ & \text { 응 } \\ & \text { 응 } \\ & 0 \end{aligned}$

Our Year 1 Mastering Number Journcy

Autumn 1 Autumn 2	Spring 1 Spring 2	Summer $1 \times$ Summer 2
Pupils will have an opportunity to consolidate the Early Learning Goals and continue to explore the composition of numbers within 10, and the position of these numbers in the linear number system.	Pupils will continue to explore the composition of numbers within 10 and explore addition and subtraction structures and the related language (without the use of symbols).	Pupils will explore the composition of numbers within 20 and their position in the linear number system. They will connect addition and subtraction expressions and equations to 'number stories').
Pupils will: - subitise within 5 , including when using a rekenrek, and re-cap the composition of 5 - develop their understanding of the numbers 6 to 9 using the ' 5 and a bit' structure - compare numbers within 10 and use precise mathematical language when doing so - re-cap the order of numbers within 10 and connect this to ' 1 more' and ' 1 less' than a given number - explore the structure of even numbers (including that even numbers can be composed by doubling any number, and can be composed of 2 s) - explore the structure of the odd numbers as being composed of $2 s$ and 1 more - explore the composition of each of the numbers 6,8 , and 10 - explore number tracks and number lines and identify the differences between them	Pupils will: - explore the composition of each of the numbers 7 and 9 - explore the composition of odd and even numbers, seeing that even numbers can be made of two odd or two even parts, and that odd numbers can be composed of one odd part and one even part - identify the number that is two more or two less than a given odd or even number, identifying that two more/ less than an odd number is the next/ previous odd number, and two more/ less than an even number is the next/ previous even number - explore the aggregation and partitioning structures of addition and subtraction through systematically partitioning and re-combining numbers within 10 and connecting this to the part-part-whole diagram, including using the language of parts and wholes - explore the augmentation and reduction structures of addition and reduction using number stories, including introducing the 'first, then, now' language structure	Pupils will: - explore the composition of the numbers 11 to 19 as ' 10 and a bit' and compare numbers within 20 - connect the composition of the numbers 11 to 19 to their position in the linear number system, including identifying the midpoints of 5,10 and 15 - compare numbers within 20 - understand how addition and subtraction equations can represent previously explored structures of addition and subtraction (aggregation/ partitioning/ augmentation/ reduction) - practise retrieving previously taught facts and reason about these Subitising Cardinality, Ordinality and counting Composition Comparison

Long Term Plah- Year 2

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number Place value				Number Addition and subtraction					Geometry Shape		
$\begin{aligned} & \text { giv } \\ & \text { 言 } \end{aligned}$	Meas MoI	ement ey	Number Mul	plicat	and	division		Measu Leng and heig	ement th	Measu Mas capo tem	ement city and eroture	
$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{E}{E} \\ & \stackrel{E}{ज} \end{aligned}$	Numb Fra	tions		Meas Tim	ement		Stat	stics	Geom Pos and dire	tion ction	Consolic	idation

Our Year 2 Mastering Number Journcy

Autumn 1	Autumn 2	Spring 1	Spene

Pupils will have an opportunity to consolidate their understanding and recall of number bonds within 10 ; they will re-cap the composition of the numbers 11 to 20 and reason about their position within the linear number system.

Pupils will:

- review the composition of the numbers 6 to 9 as ' 5 and a bit'
- compare numbers using the language of comparison and use
the symbols <> =
- review the structure of even numbers (including exploring how even numbers can be composed of two odd parts or two even parts) and the composition of each of 6,8 and 10
- review the structure of odd numbers (including exploring how odd numbers can be composed of one odd part and one even part) and the composition of each of 7 and 9
- consolidate their understanding of the numbers 10 and 20 as
'10 and a bit'
- consolidate their understanding of the linear number system to 20 and reason about midpoints

Pupils will have an opportunity to use their knowledge of the composition of numbers within 10 to calculate within 20; they will explore the links between the numbers in the linear number system within 10 to numbers within 100, focusing on multiples of 10 and the midpoint of 50 .

Pupils will:

- explore how the numbers 6 to 9 can be doubled using the '5 and a bit' and ' 10 and a bit' structure
- use doubles to calculate near doubles
- use bonds of 10 to reason about bonds of 20 , in which the given addend is greater than 10
- use known number bonds within 10 to calculate within 20 , working within the 10 -boundary
- use their knowledge of bonds of 10 to find three addends that sum to 10
- use their knowledge of the composition of numbers within

20 to add and subtract across the 10-boundary

- use their understanding of the linear number system to 10
to position multiples of 10 on a 0-100 number line and reason about midpoints

Pupils will have further opportunities to use their knowledge of the composition of numbers within 10 to calculate within 20 and to reason about equations and inequalities

Pupils will:

- continue to explore a range of strategies to subtract across the 10-boundary
- review bonds of 20 in which the given addend is greater than 10 , and reason about bonds of 20 , in which the given addend is less than 10
- practise previously explored strategies to support their reasoning about inequalities and equations
- review doubles and near doubles and transform additions in which two addends are adjacent odd/ even numbers into doubles
- consolidate previously taught facts and strategies through continued, varied practice

```
Subitising
Cardinality, Ordinality and counting
Composition
Comparison
```


Long Term Plan- Year 3

Long Term Plan－Year 4

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week9	Week 10	Week 11	Week 12
$\frac{E_{1}}{\frac{2}{x}}$	Number Ploce value				Number Addition and subtraction			唇	Number Multiplication and division A			
$\begin{aligned} & \text { g } \\ & \text { 言 } \\ & \text { n } \end{aligned}$	Number Multiplication and division a			Measurement Length and perime ter		Number Fractions				Number Deaimals A		
$\begin{aligned} & \stackrel{\oplus}{6} \\ & \stackrel{E}{E} \\ & \text { 合 } \end{aligned}$	Number Decimals ：		Measurement Money		Measurement Time		들 흠 뮨 总	Geometry Shape		$\frac{y}{4}$ $\frac{3}{6}$ $\frac{0}{n}$	Geometry Position and direction	

Long Term Plan- Year 5

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
	Number Place value			Number Addit and subtra	on action	Number Multiplication and division A			Number Fractions A			
$\begin{aligned} & \text { gi } \\ & \text { 宮 } \end{aligned}$	Number Multiplication and division \mathbf{B}			Fracti	ons B	Number Decimals and percentages			Measurement Perimeter and area		Statistics	
$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{E} \\ & \stackrel{y}{E} \end{aligned}$	Shape			Geometr Positio and direct		Number Decimals				Measurement Converting units		

Long Terme Plan- Year 6

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{aligned} & \underline{E} \\ & \frac{\varepsilon}{3} \\ & \hline \end{aligned}$	Number Place value		Number Addition, subtraction, multiplication and division					Number Fractions A		Number Fractions B		
$\begin{aligned} & \text { 음 } \\ & \text { 咅 } \end{aligned}$	Ratio		Algebra		Number Decin		Number Fractions, decimals and percentages		Measurement Area, perimeter and volume		Statis	tics
$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{E} \\ & \stackrel{y}{n} \end{aligned}$	Geometry Shape				Themed projects, consolidation and problem solving							

Outdoor Leatning

Times tables in
Year 3/4

Outdoor Learning

Times Tables

We use a whole school approach to teach fluency of times tables.
We adopt both concrete, pictorial and abstract methods.

Calculation Poficy Addition and Subtraction

Vocabulary-Addition and Subtraction

Addend - A number to be added to another.

Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.

Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.

Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.

Total - The aggregate or the sum found by addition.

Calculation Poficy-Addition

Skill	Year	Representations and models	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square

Skill	Year	Representations and models	
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10
Adace value counters			

Calculation Poficy-Addition

Skill: Add 1-digit numbers within 10 年

Calculation Poficy-Addition

Calculation Poficy-Addition

Skill: Add three 1-digit numbers \quad| Year: 2 |
| :--- |

Calculation Poficy-Addition

Calculation Poficy-Addition

Calculation Poficy-Addition

Skill: Add numbers with up to 3 digits						Year: 3
		265 26 Dres			$]^{-?}$ Ones	Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 3 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

Calculation Poficy-Addition

Skill: Add numbers with up to 4 digits							Year: 4
2,148 Thousand	Hundreds \square \square 4 目 \qquad \underline{L}		2,138	38 2,148 Thousands $\theta \theta$		$\begin{array}{r} 1378 \\ +2148 \\ \hline 3526 \\ \hline 11 \end{array}$ 6	Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 4 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

Calculation Poficy-Addition

Calculation Poficy-Addition

Calculation Poficy-Subtraction

Skill	Year	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Place value counters

Skill	Year	Representations and models	
Subtract with up to 3- digits	3	Part-whole model Bar model	Base 10 10 Place value counters Column subtraction
Subtract with up to 4- digits	4	Part-whole model Bar model	Base 10 Place value counters Column subtraction
Subtract with more than 4 digits	5	Part-whole model Bar model	Place value counters Column subtraction
Subtract with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column subtraction

Calculation Poficy-Subtraction

Calculation Poficy-Subtraction

Skill: Subtract 1 and 2 -digit numbers to 20	Year: 1/2
	In Year 1, subtracting one-digit numbers that cross 10, is done by counting back, using objects, number tracks and number lines. From Year 2, children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames, number shapes and number lines are particularly useful for this.

Calculation Poficy-Subtraction

Calculation Poficy

Part-Whole Model

$$
\begin{array}{ll}
7=4+3 & 7-3=4 \\
7=3+4 & 7-4=3
\end{array}
$$

Benefits

This part-whole model supports children in their understanding of aggregation and partitioning. Due to its shape, it can be referred to as a cherry part-whole model.

When the parts are complete and the whole is empty, children use aggregation to add the parts together to find the total.

When the whole is complete and at least one of the parts is empty, children use partitioning (a form of subtraction) to find the missing part.

Part-whole models can be used to partition a number into two or more parts, or to help children to partition a number into tens and ones or other place value columns.

In KS2, children can apply their understanding of the part-whole model to add and subtract fractions, decimals and percentages.

Calculation Poficy

Bar Model (single)

Concrete

Combination \square

Benefits

The single bar model is another type of a part-whole model that can support children in representing calculations to help them unpick the structure.

Cubes and counters can be used in a line as a concrete representation of the bar model.

Discrete bar models are a good starting point with smaller numbers. Each box represents one whole.

The combination bar model can support children to calculate by counting on from the larger number. It is a good stepping stone towards the continuous bar model.

Continuous bar models are useful for a range of values. Each rectangle represents a number. The question mark indicates the value to be found.

In KS2, children can use bar models to represent larger numbers, decimals and fractions.

Calculation Poficy

Number Shapes

Benefits

Number shapes can be useful to support children to subitise numbers as well as explore aggregation, partitioning and number bonds.

When adding numbers, children can see how the parts come together making a whole. As children use number shapes more often, they can start to subitise the total due to their familiarity with the shape of each number.

When subtracting numbers, children can start with the whole and then place one of the parts on top of the whole to see what part is missing. Again, children will start to be able to subitise the part that is missing due to their familiarity with the shapes.

Children can also work systematically to find number bonds. As they increase one number by 1 , they can see that the other number decreases by 1 to find all the possible number bonds for a number.

Calculation Poficy

Cubes

$$
7=4+3
$$

$$
7=3+4
$$

$$
7-3=4
$$

$7-3=4$

Benefits

Cubes can be useful to support children with the addition and subtraction of one-digit numbers.

When adding numbers, children can see how the parts come together to make a whole. Children could use two different colours of cubes to represent the numbers before putting them together to create the whole.

When subtracting numbers, children can start with the whole and then remove the number of cubes that they are subtracting in order to find the answer. This model of subtraction is reduction, or take away.

Cubes can also be useful to look at subtraction as difference. Here, both numbers are made and then lined up to find the difference between the numbers.

Cubes are useful when working with smaller numbers but are less efficient with larger numbers as they are difficult to subitise and children may miscount them.

Calculation Poficy

Ten Frames (within 10)

Benefits

When adding and subtracting within 10 , the ten frame can support children to understand the different structures of addition and subtraction.

Using the language of parts and wholes represented by objects on the ten frame introduces children to aggregation and partitioning.
Aggregation is a form of addition where parts are combined together to make a whole. Partitioning is a form of subtraction where the whole is split into parts. Using these structures, the ten frame can enable children to find all the number bonds for a number.

Children can also use ten frames to look at augmentation (increasing a number) and take-away (decreasing a number). This can be introduced through a first, then, now structure which shows the change in the number in the 'then' stage. This can be put into a story structure to help children understand the change e.g. First, there were 7 cars. Then, 3 cars left. Now, there are 4 cars.

Calculation Poficy

Ten Frames (within 20)

Benefits

When adding two single digits, children can make each number on separate ten frames before moving part of one number to make 10 on one of the ten frames. This supports children to see how they have partitioned one of the numbers to make 10, and makes links to effective mental methods of addition.

When subtracting a one-digit number from a two-digit number, firstly make the larger number on 2 ten frames. Remove the smaller number, thinking carefully about how you have partitioned the number to make 10, this supports mental methods of subtraction.

When adding three single-digit numbers, children can make each number on 3 separate 10 frames before considering which order to add the numbers in. They may be able to find a number bond to 10 which makes the calculation easier. Once again, the ten frames support the link to effective mental methods of addition as well as the importance of commutativity.

Calculation Poficy

Bead Strings

-00-00000000-
 -000-0000000-

-00-000000000000000000-
-000-00000000000000000-

Benefits

Different sizes of bead strings can support children at different stages of addition and subtraction.

Bead strings to 10 are very effective at helping children to investigate number bonds up to 10 .
They can help children to systematically find all the number bonds to 10 by moving one bead at a time to see the different numbers they have partitioned the 10 beads into e.g. $2+8=10$, move one bead, $3+7=10$

Bead strings to 20 work in a similar way but they also group the beads in fives. Children can apply their knowledge of number bonds to 10 and see the links to number bonds to 20 .

Bead strings to 100 are grouped in tens and can support children in number bonds to 100 as well as helping when adding by making ten. Bead strings can show a link to adding to the next 10 on number lines which supports a mental method of addition.

Calculation Poficy

Number Tracks

Benefits

Number tracks are useful to support children in their understanding of augmentation and reduction.

When adding, children count on to find the total of the numbers. On a number track, children can place a counter on the starting number and then count on to find the total.

When subtracting, children count back to find their answer. They start at the minuend and then take away the subtrahend to find the difference between the numbers.

Number tracks can work well alongside ten frames and bead strings which can also model counting on or counting back.

Playing board games can help children to become familiar with the idea of counting on using a number track before they move on to number lines.

Calculation Poficy

Number Lines (blank)

$$
35+37=72
$$

$$
35+37=72
$$

$$
72-35=37
$$

Benefits

Blank number lines provide children with a structure to add and subtract numbers in smaller parts.

Developing from labelled number lines, children can add by jumping to the nearest 10 and then adding the rest of the number either as a whole or by adding the tens and ones separately.

Children may also count back on a number line to subtract, again by jumping to the nearest 10 and then subtracting the rest of the number.

Blank number lines can also be used effectively to help children subtract by finding the difference between numbers. This can be done by starting with the smaller number and then counting on to the larger number. They then add up the parts they have counted on to find the difference between the numbers.

Calculation Poficy

Straws

Benefits

Straws are an effective way to support children in their understanding of exchange when adding and subtracting 2-digit numbers.

Children can be introduced to the idea of bundling groups of ten when adding smaller numbers and when representing 2 -digit numbers. Use elastic bands or other ties to make bundles of ten straws.

When adding numbers, children bundle a group of 10 straws to represent the exchange from 10 ones to 1 ten. They then add the individual straws (ones) and bundles of straws (tens) to find the total.

When subtracting numbers, children unbundle a group of 10 straws to represent the exchange from 1 ten to 10 ones.

Straws provide a good stepping stone to adding and subtracting with Base 10/Dienes.

Calculation Poficy

Base 10/Dienes (addition)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange.. The representation becomes less efficient with larger numbers due to the size of Base 10. In this case, place value counters may be the better model to use.

When adding, always start with the smallest place value column. Here are some questions to support children. How many ones are there altogether?
Can we make an exchange? (Yes or No)
How many do we exchange? (10 ones for 1 ten, show exchanged 10 in tens column by writing 1 in column) How many ones do we have left? (Write in ones column)
Repeat for each column.

Calculation Poficy

Base 10/Dienes (subtraction)

Hundreds	Tens	Ones
		435

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first subtract without an exchange before moving on to subtraction with exchange. When building the model, children should just make the minuend using Base 10 , they then subtract the subtrahend. Highlight this difference to addition to avoid errors by making both numbers. Children start with the smallest place value column. When there are not enough ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.
This model is efficient with up to 4 -digit numbers. Place value counters are more efficient with larger numbers and decimals.

Calculation Poficy

Place Value Counters (addition)

Benefits

Using place value counters is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange. Different place value counters can be used to represent larger numbers or decimals. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When adding money, children can also use coins to support their understanding. It is important that children consider how the coins link to the written calculation especially when adding decimal amounts.

Calculation Poficy

Place Value Counters (Subtraction)

Hundreds	Tens	Ones

$$
\begin{array}{r}
6452 \\
-\quad 207 \\
\hline 445 \\
\hline
\end{array}
$$

Benefits

Using place value counters is an effective way to support children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing counters so they can see the clear links between the written method and the model.

Children should first subtract without an exchange before moving on to subtraction with exchange. If you don't have place value counters, use normal counters on a place value grid to enable children to experience the exchange between columns.

When building the model, children should just make the minuend using counters, they then subtract the subtrahend. Children start with the smallest place value column. When there are not enough ones/tens/hundreds to subtract in a column, children need to move to the column to the left and exchange e.g. exchange 1 ten for 10 ones. They can then subtract efficiently.

Calculation Poficy Multipfication and Division

Vocabulary - Muctipfication and Division

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division

Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

Calculation Poficy - Muctipfication

Skill	Year	Representations and models	
Solve one-step problems with multiplication	$1 / 2$	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	$3 / 4$	Place value counters Base 10	Expanded written method Short written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method

Skill	Year	Representations and models	
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	$5 / 6$	Formal written method	

Calculation Poficy-Muftipfication

Skill: Solve 1-step problems using multiplication | Year: $\mathbf{1 / 2}$ |
| :--- |
| lildren represent |
| multiplication as |
| repeated addition in |
| many different ways. |
| In Year 1, children use |
| concrete and pictorial |
| representations to |
| solve problems. They |
| are not expected to |
| record multiplication |
| formally. |

Calculation Poficy-Mustipfication

Calculation Poficy-Muftipfication

Calculation Poficy-Mustipfication

Skill: Multiply 4-digit numbers by 1-digit numbers | Year: 5 |
| :--- |

Calculation Poficy-Muftipfication

Calculation Poficy-Muctipfication

Skill: Multiply 3-digit numbers by 2-digit numbers

Calculation Poficy-Mustipfication

Calculation Poficy-Division

Skill	Year	Representations and models			Skill	Year	Representations and models	
Solve one-step problems with division (sharing)	1/2	Bar model Real life objects	Arrays Counters		Divide 2-digits by 1 digit (sharing with remainders)	3/4	Straws Base 10 Bar model	Place value counters Part-whole model
Solve one-step problems with division (grouping)	1/2	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters		Divide 2-digits by 1 digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division
Divide 2-digits by 1 digit (no exchange sharing)	3	Straws Base 10 Bar model	Place value counters Part-whole model		Divide 3-digits by 1 digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1 digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters Part-whole model		Divide 3-digits by 1 digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division
		Skill	Year	Representations and models				
		Divide 4-digits by 1 digit (grouping)	5	Place value counters Counters		Place value grid Written short division	ision	
		Divide multi-digits by 2-digits (short division)	6	Written short division		List of multiples		
		Divide multi-digits by 2-digits (long division)	6	Written long division		List of multiples		

Calculation Poficy-Division

| Skill: Solve 1-step problems using multiplication (sharing) | Year: $1 / 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| There are 20 apples altogether.
 They are shared equally between 5 bags.
 How many apples are in each bag? | Children solve
 lroblems by sharing
 amounts into equal
 groups.
 In Year 1, children use
 concrete and pictorial
 representations to
 solve problems. They
 are not expected to
 record division
 formally. |
| In Year 2, children are | |
| introduced to the | |
| division symbol. | |

Calculation Poficy-Division

Skill: Solve 1-step problems using division (grouping)

Calculation Poficy-Division

Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Year: 3 |
| :--- |

Calculation Poficy-Division

Calculation Poficy-Division

Calculation Poficy-Division

| Skill: Divide 2-digits by 1-digit (grouping) | Year: 5 |
| :--- | :--- | :--- | :--- |
| Tens | When using the short
 division method,
 children use grouping.
 Starting with the
 largest place value,
 they group by the
 divisor. |
| Language is | |
| important here. | |
| Children should | |
| consider 'How many | |
| groups of 4 tens can | |
| we make?' and 'How | |
| many groups of 4 | |
| ones can we make?' | |
| Remainders can also | |
| be seen as they are | |
| left ungrouped. | |

Calculation Poficy-Division

Calculation Poficy-Division

Skill: Divide 3-digits by 1-digit (grouping) | Year: 5 |
| :--- |

Calculation Poficy-Division

Calculation Poficy-Division

Calculation Poficy-Division

Calculation Poficy

Bar Model

Benefits

Children can use the single bar model to represent multiplication as repeated addition. They could use counters, cubes or dots within the bar model to support calculation before moving on to placing digits into the bar model to represent the multiplication.

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups.

It is important when solving word problems that the bar model represents the problem.

Sometimes, children may look at scaling problems. In this case, more than one bar model is useful to represent this type of problem, e.g. There are 3 girls in a group. There are 5 times more boys than girls. How many boys are there?
The multiple bar model provides an opportunity to compare the groups.

Calculation Poficy

Number Shapes

$5 \times 4=20$
$4 \times 5=20$

$5 \times 4=20$
$4 \times 5=20$

$18 \div 3=6$

Benefits

Number shapes support children's understanding of multiplication as repeated addition.

Children can build multiplications in a row using the number shapes. When using odd numbers, encourage children to interlock the shapes so there are no gaps in the row. They can then use the tens number shapes along with other necessary shapes over the top of the row to check the total. Using the number shapes in multiplication can support children in discovering patterns of multiplication e.g. odd \times odd $=$ even, odd \times even $=$ odd, even \times even $=$ even.

When dividing, number shapes support children's understanding of division as grouping. Children make the number they are dividing and then place the number shape they are dividing by over the top of the number to find how many groups of the number there are altogether e.g. There are 6 groups of 3 in 18 .

Calculation Poficy

Bead Strings

$-00-000-000-000-000-$

$5 \times 3=15$
$3 \times 5=15$
$15 \div 3=5$
-00000-00000-00000-

$$
\begin{aligned}
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned} \quad 15 \div 5=3
$$

-0000-0000-0000-0000-0000-
$4 \times 5=20$
$20 \div 4=5$

Benefits

Bead strings to 100 can support children in their understanding of multiplication as repeated addition. Children can build the multiplication using the beads. The colour of beads supports children in seeing how many groups of 10 they have, to calculate the total more efficiently.
Encourage children to count in multiples as they build the number e.g. 4, 8, 12, 16, 20.

Children can also use the bead string to count forwards and backwards in multiples, moving the beads as they count.

When dividing, children build the number they are dividing and then group the beads into the number they are dividing by e.g. 20 divided by 4 - Make 20 and then group the beads into groups of four. Count how many groups you have made to find the answer.

Calculation Poficy

Number Tracks

$6 \times 3=18$
$3 \times 6=18$

$$
18 \div 3=6
$$

Benefits

Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting. Translucent counters help children to see the number they have landed on whilst counting.

When multiplying, children place their counter on O to start and then count on to find the product of the numbers.
When dividing, children place their counter on the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 .
Children record how many jumps they have made to find the answer to the division.

Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient.

Calculation Poficy

Base 10/Dienes (multiplication)

Hundreds	Tens	Ones	
	$\\|$		
		.\quad.	
		.\quad.	

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed.

Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectangular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of multiplying 2 -digits by 2 -digits.

Calculation Poficy

Base 10/Dienes (division)

$68 \div 2=34$

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of division.

When numbers become larger, it can be an effective way to move children from representing numbers as ones towards representing them as tens and ones in order to divide. Children can then share the Base 10/ Dienes between different groups e.g. by drawing circles or by rows on a place value grid.

Tens	Ones

$$
72 \div 3=24
$$

When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange e.g. one ten for ten ones. When recording, encourage children to use the partwhole model so they can consider how the number has been partitioned in order to divide. This will support them with mental methods.

Calculation Poficu
 Place Value Counters (multiplication)

Benefits

Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic.

Place value counters also support the area model of multiplication well. Children can see how to multiply 2digit numbers by 2 -digit numbers.

Calculation Poficy

Place Value Counters (division)

1223

Benefits

Using place value counters is an effective way to support children's understanding of division.

When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared, they exchange the counter e.g. exchange one ten for ten ones. This method can be linked to the part-whole model to support children to show their thinking.

Place value counters also support children's understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exchange the counter e.g. exchange one hundred for ten tens.

Docabulary Progression

Number - Number and place value						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count	sort	count in steps	ascending	negative numbers	ten thousands	millions
subitise	represent	count in multiples	descending	roman numerals	one hundred thousands	ten millions
order/ordinal	muitiples	place value	10 or 100 more	1000 more	powers of	
compare	partitioning	estimate	10 or 100 less	1000 less	integer	
forwards	ones	compare	hundreds	thousands		
backwards	tens			round		
numerals						
digit						
one more						
one less						
equal to						
more than						
ess than (fewer)						

Docabulary Progression

Addition and subtraction						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
add	addition/add	sum	column addition	4-digit number	Addend	
plus	subtraction	3 -digit number	column subtraction	operations	Minuend	
altogether	difference	commutative	exchange	methods		
total	equals		estimate			
take away /minus	facts					
number bands	problems					
part	missing number problems					
whole	2-digit number					
digit	inverse					

Vocabulary Progression

Multiplication and division						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
double	multiplication	multiplication tables	exchange	factor pairs	multiples	multi-digit numbers
half	division	commutative	mathematical statements	formal written layout	factors	long division
twice as many	arrays	repeated addition	missing number problems	distributive law	prime numbers	
equal			integer scaling problems	remainders	square numbers	
unequal			correspondence problems		cube numbers	
share			derived facts		short division	
group					product	
odd					dividend	
even					divisor	
					quatient	
					operations	

Vocabulary Progression

Fractions/Decimals/Percentages						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	whole	three quarters	tenths	decimal equivalence	fifth	
	half	third		hundredths	thousandths	
	quarter	equivalent fractions		convert	mixed numbers	
	equal parts	unit fractions		proper fractions	per cent \%	
		non unit fractions		improper fractions	factors	
		numerator		decimal point	integer	
		denominator			complements	
		one whole				

Vocabulary Progression

Algebra						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
						formulae
						linear number sequences
						aigebraically
						equation
						uniknowns
						combinations
						variables

Vocabulary Progression

Measurement (Measure and Length)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
measure	compare	standard units	millimetre mm	kilometres km	decimal notation	conversion
wideler)		estimate	perimeter	rectilinear figure	scaling	miles
narrow(er)		order		area	metric units	formulae
compare		record results			imperial units	parallelograms
long(er)(est)		centimetre om			inches	triangles
short(er)(est)		metrem			compound shape	feet
length					irregular shapes	
					square centimetres	
					square metres	

Vocabulary Progression

Measurement (Height, Weight and Capacity)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
height	mass	kilogram kg			cubic centimetre	cubic metre
long(er)/short(er)	volume	gramg			pounds	cubic millimetre
tall(er)/short(er)		quarter full			pints	cubic kilometre
weight		three quarters full				gallons
capacity		litres I				stones
heavy/light		millilitres ml				ounces
heavier than		temperature				
lighter than		Celsius				
big/bigger/biggest						
full/empty						
more than						
less than						
half/half full						

Vocabulary Progression

Measurernent(Time)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 5
tome	ctronologital order	intervals of time	anaiogue clock	convert		
quicker	days of the week	quarter past/to	toman numerais			
slower	months of the yeor	duration	12-hour clock			
eatier	month		24-hour clock			
later	year		a.m.p.m.			
before	o'clock		noon			
atter	nall past		midnight			
first	second		leap yeat			
next			digital			
today						
vesterday						
tomorrow						
morning						
afternoen						
evening						
day						
week						
hour						
minutes						

Docabulary Progression

Measurement (Money)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	money	value				
	coins	change				
	notes					
	pounds E					
	pence p					

Vocabulary Progression

Geometry - Properties of Shape						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
2-d shapes	sides	pentagon	right-angle triangle	isosceles	regular polygon	radius
rectangle	corners	hexagon	heptagon	equilateral	irregular polygon	diameter
square	properties	line of symmetry	octagon	scalene		circumference
circle	pyramids	properties	polygon	trapezium		dimensions
triangle	faces	cylinder	properties	rhombus		
characteristics		edges	prism	parallelogram		
3-d shapes		vertices		kite		
cuboids		vertex		geometric shapes		
cubes				quadrilaterals		
cone						
spheres						
curved						
straight						
flat						

Vocabulary Progression

Geometry - Properties of shape (z)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			orientations		reflex angles	
			angles		degrees	
			acute angle		one whole turn	
			obtuse angle		angles on straight line	
			turn		angles around a point	
			right angles		vertically opposite	
			half turn		missing angles	
			three quarters of a turn			
			greater than right angle			
			less than right angle			
			horizontal lines			
			vertical lines			
			perpendicular lines			
			parallel lines			

Docabulary Progression

Geometry - Position and direction						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
over	position	clockwise/anti-clockwise		co-ordinates	reflection	four quadrants
under	direction	straight line		first quadrant		co-ordinate plane
between	movement	rotation		grid		
around	whole turn	arrange		translation		
through	quarter turn	sequences		plot		
on	half turn			polygon		
into	three-quarter turn			axis		
next to						
behind						
beneath						
order						
repeat						
patterns						
on top of						

Vocabulary Progression

Statistics						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		pictograms	table	time graph	timetable	pie chart
		tally chart	bar chart	discrete data	two-way tables	mean
		block diagram	one-step protiem	continuous data		
		category	two-step problem	line graph		
		sorting		comparison problem		
		totalling		sum problem		
		comparing		difference problem		
		horizontal		calculate		
		vertical		interpret		

Vocabulary Progression

Statistics						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		pictograms	table	time graph	timetable	pie chart
		tally chart	bar chart	discrete data	two-way tables	mean
		block diagram	one-step protiem	continuous data		
		category	two-step problem	line graph		
		sorting		comparison problem		
		totalling		sum problem		
		comparing		difference problem		
		horizontal		calculate		
		vertical		interpret		

Vocabulary Progression

Ratio and proportion						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
						relative size
						missing values
						integer multiplication
						percentages
						scale factor
						unequal sharing $\&_{\text {grauping }}$

Progression through Year groups

Place value

Place value: Count

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- count to and across 100, forwards and backwards, beginning with 0 or 1, or from any Count numbers to 100 in numerals; count in multiples tens	- count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward	- count from 0 in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number	- count in multiples of $6,7,9,25$ and 1000 - count backwards through zero to include negative numbers	- count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 - count forwards and backwards with positive and negative whole numbers, including through zero	
Autumn 1 Spring 1 Spring 3 Summer 4	Autumn 1	Autumn 1 Autumn 3	Autumn 1 Autumn 4	Autumn 1 Summer 4	

Note-In the
WRM schemes
negative numbers
are introduced in
Year 5

Place value: Represent

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- identify and represent numbers using objects and pictorial representations - read and write numbers to 100 in numerals - read and write numbers from 1 to 20 in numerals and words	- read and write numbers to at least 100 in numerals and in words - identify, represent and estimate numbers using different representations, including the number line	- identify, represent and estimate numbers using different representations - read and write numbers up to 1000 in numerals and in words	- identify, represent and estimate numbers using different representations - read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	- read, write, (order and compare) numbers to at least 1000000 and determine the value of each digit - read Roman numerals to 1000 (M) and recognise years written in Roman numerals	- read, write, (order and compare) numbers up to 10 000000 and determine the value of each digit
Autumn 1 Spring 1 Spring 3 Summer 4	Autumn 1				

Place value: Use and compare

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
given a number, identify one more and one less	- recognise the place value of each digit in a two-digit number (tens, ones) compare and order numbers from 0 up to 100; signs	- recognise the place value of each digit in a three-digit number hundreds, tens ones) - compare and to 1000		- (read, write) order and compare numbers oto ot least 1000 oon and determine the value of each digit	- (read, write). order ond compare numbers upto 0 0. 000000 and doterme value of each digit
Autumn 1 Spring 1 Spring summer	Autumn 1				

Place value: Problems/Rounding

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- use place value and number facts to solve problems	- solve number problems and practical problems involving these ideas	- round any number to the nearest 10,100 or 1000 - solve number and practical problems that involve all of the above and with increasingly large positive numbers	- interpret negative numbers in context - round any number up to 1 000000 to the nearest 10,100 , 1000, 10000 and 100000 - solve number problems and practical problems that involve all of the above	- round any whole number to a required degree of accuracy use negative numbers in context, and calculate intervals across zero - solve number and practical problems that involve all of the above
	Autumn 1				

Addition

 and
subtraction

Addition \& subtraction: Calculations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- add and subtract one-digit and twodigit numbers to 20, including zer	- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: > a two-digit number and ones > a two-digit number and tens > two two-digit numbers > adding three onedigit numbers	- add and subtract numbers mentally, - a three-digit number and ones - a three-digit number and tens > a three-digit number and hundreds - add and subtract numbers with up to three digits, written methods of columnar addition and subtraction	- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers	- perform mental calculations, including with mixed operations and large numbers knowledge of the order of operations to carry out calculations involving the four operations
Autumn 2 Spring 2	Autumn 2				

\section*{Addition \& subtraction: Problems
 | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square$ - 9 | - solve problems with addition and subtraction:
 using concrete objects and representations, including those involving numbers, quantities and measures
 - applying their increasing mental and written methods | - solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction | - solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why | - solve addition and subtraction multistep problems in contexts, deciding which operations use and why
 - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the equals sign | - solve addition and subtraction multistep problems in contexts, deciding which operations use and why |
| Autumn 2 Spring 2 | Autumn 2 |

Multiplication and division

Multiplication \& division: Recall/Use

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including and even numbers - show that multiplication of two numbers can be done in any order (commutative) and division of another cannot	- recall and use multiplication and division facts fo the 3, 4 and 8 multiplication tables	- recall division facts for multiplication tables up to $12 \times$ 12 - use place value known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by together three numbers recognise and use factor pairs and commutativity in calculations	- identify multiples and factors, including finding all factor pairs of a number, and common factors know and use the vocabulary of prime factors and composite (nonprime) numbers a number up to 100 is prime and recall prime numbers up to 19 square numbers and cube numbers, and the notation for squared (2) and cubed (3)	- identify common factors, common multiples and prime numbers use estimation to check answers to determine, in the context of a problem, an degree of accuracy
	Spring 2	Autumn 3 Spring 1	Autumn 4 Spring 1	Autumn 3	Autumn 2

Multiplication \& division: Calculations

Multiplication \& division: Problems

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	- solve problems involving multiplication and division, using materials, arrays, repeated addition, and multiplication and division facts, including problems in contexts	- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problem and correspondence problems in which n objects are connected to m objects	- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - solve problems involving multiplication and division, including scaling by simple problems involving simple rates	- solve problems involving addition, subtraction, multiplication and division
Summer 1	Spring 2	Spring 1	Spring 1	Autumn 3 Spring 1	Autumn 2

Multiplication \& division: Combined

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	- use their knowledge of the order of operations to carry out calculations involving the four operations
				Spring 1	Autumn 2

Fractions, decimals, percentages

Fractions: Recognise and write

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- recognise, find and name a half as one of two equal parts of an object, shape or quantity - recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	- recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity	- count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 recognise, find and write fractions of a discrete set of objects: fractions and nonunit fractions with small denominators - recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators	- count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.	- identify, name and write equivalent fractions of a given fraction represented visually, including tenths and hundredths - recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $\frac{2}{5}+$ $\left.\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}\right]$	
Summer 2	Summer 1	Spring 3	Spring 4 Summer 1	Autumn 4	

Fractions: Compare

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- Recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$	- recognise and show, using diagrams, fractions with small denominators - compare and order unit fractions, and fractions with the same denominators	- recognise and show, using diagrams, families of common equivalent fractions	- compare and order fractions whose denominators are all multiples of the same number	- use common factors to simplify fractions; use common multiples to express fractions in the same denomination - compare and order fractions, including fractions >1
	Summer 1	Spring 3	Spring 3	Autumn 4	Autumn 3

Fractions: Calculations

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- write simple fractions for example, $\frac{1}{2}$ of $6=$ 3	- add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7}+$ $\frac{1}{7}=\frac{6}{7}$	$\begin{aligned} & \hline \text { - add and subtract } \\ & \text { fractions with the } \\ & \text { same } \\ & \text { denominator } \end{aligned}$	- add and subtract fractions with the same denominator and denominators that are multiples of the same number - multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions - multiply simple pairs of proper fractions, writing simplest form [for example, $\left.\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}\right]$ divide proper fractions by whole numbers [for example $\frac{1}{3} \div 2=\frac{1}{6}$]
	Summer 1	Summer 1	Spring 3	Autumn 4 Spring 2	Autumn 3 Autumn 4

Fractions: Solve problems

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- solve problems that involve all of the above	- solve problems involving increasingly harder fractions to collaulote quantite, and fractions to divide quantities. inclod-ung non fractions where the onswer is a whole number		
		Spring 3 Summer 1	Spring 3		

> Decimals: Recognise, write, compare

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- recognise and write decimal equivalents of any number of tenths or hundredths write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ with decimals place to the nearest whole number compare numbers the same decimal places up to two decimal places	- read and write decimal numbers as fractions [for ${ }_{71}$. $\left.\frac{71}{100}\right]$ thognise and use relate thems and tenths, hundredths and decimal equivalents round decimals with two decimal places to the nearest whole number and to one decimal place read, write, order and compare numbers with up places	- identify the value of each digit in numbers given to three decimal places
			Spring 4 Summer 1	Spring 3 Summer 3	Spring 3

Fractions, decimals and percentages

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- solve simple measure and money problems involving fractions and decimals to two decimal places	- recognise the per cent symbol (\%) and understan relates to 'number of parts per hundred', and write percentages as a fraction with and as a decimal solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and those fractions with a denominator of a ${ }_{25}$ multiple of 10 or	- associate a fraction with division and calculate decima fraction equivalents [for example, 0.375] for a simple fraction [for example, $\frac{3}{8}$] - recall and use equivalences between simple fractions, decimals and percentages, including in different contexts
			Spring 3 Spring 4 Summer1	Spring 3	Spring 3 Spring 4

Ratio and proportion, algebra

Ratio and proportion

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
					Spring 1

Algebra

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, objects and pictorial enresentations, and missing such as $7=\square-9$	- recognise and use the inverse between addition and subtraction check calculations and solve missing number problems number problems	- solve problems, including missing number problems			- use simple - generate and describe linear number - express missing number problems algebraically find pairs of numbers that satisfy an quation with two enumerate possibilities of combinations of two variables
					Spring 2

Note-although formal algebraic notation is not introduced
until Y6, algebraic thinking starts much earlier as exemplified
by the 'missing number' objectives from Y $\mathrm{Y}_{1 / 2 / 3}$

Measurement

Using measures

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- choose and use appropriate standard units to estimate and measure length/height in any direction $(\mathrm{m} / \mathrm{cm})$; mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels - compare and order lengths, mass, volume/capacity and record the results using > , < and $=$	- measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g); volume/capacity ($/ / \mathrm{ml}$)	- Convert between different units of measure [for example, kilometre to metre; hour to minute] - estimate, compare and calculate different measures	- convert between different units of metric measure understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling	- solve problems involving the calculation and conversion of units of measure, notation up to 3 d.p. where appropriate use, read, write and convert between standard units, converting length, mass volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3 d.p. - convert between miles and kilometres
Spring 4 Spring 5 Summer 6	Spring 3 Spring 4	Spring 2 Spring 4	Spring 2 Summer 3	Spring 4 Summer 5 Summer 6	Autumn 5

Money					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- recognise and know the value of different denominations of coins and notes	- recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value - find different combinations of coins that equal the same amounts of money - solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	- add and subtract amounts of money to give change, using both $£$ and p in practical contexts	- estimate, compare and calculate different measures, including money in pounds and pence	- use all four operations to solve problems involving measure [for example, money]	
Summer 5	Spring 1	Summer 2	Summer 2	Summer 3	

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] recognise and use language relating to dates, including days of the week, weeks, months tell the time to the hour and half past the hour and draw clock face to show these times	- compare and sequence intervals of time - tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times - know the number of minutes in an hour and the in a day		- read, write and convert time between analogue and digital 12 and 24 -hour clocks - solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	- solve problems involving converting between units of time	- use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice versa Note - In the WRM schemes, time conversions are covered in V5; the Y6 block concentrates on metric units.
Summer 6	Summer 2	Summer 3	Summer 3	Summer 5	Autumn 5

Perimeter, area, volume					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- measure the perimeter of simple 2-D shapes	- measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres - find the area of rectilinear shapes by counting squares	- measure and calculate the perimeter of rectilinear shapes in centimetres and metres calculate and compare the area of rectangles (including squares) and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ (m^{2}) and estimate the area of irregular shapes estimate volume ffor example, using blocks to build capacity [for example, using water]	- recognise that shapes with the same areas can have different vice versa - recognise when it is possible to use formulae for area shapes - calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and cuboids using standard units, centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units units
		Spring 2	Autumn 3 Spring 2	Spring 4 Summer 6	Spring 5

Geometry

2-D shapes

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \text { recognise and } \\ & \text { name common 2- } \\ & \text { D shapes [for } \\ & \text { example, } \\ & \text { rectangles } \\ & \text { (including } \\ & \text { squares), circles } \\ & \text { and triangles] } \end{aligned}$	- identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and pyramid] compare and sort common 2-D shapes and everyday objects	- draw 2-D shapes	- compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes - identify lines of symmetry in 2-D shapes presented in different orientations	- distinguish between regular and irregular polygons based on reasoning about equal sides and angles. use the properties of rectangles to deduce related facts and find missing lengths and angles	- draw 2-D shapes using given dimensions and angles - compare and classify geometric shapes based on their properties and sizes - illustrate and name parts of circles, including radius, diameter and know that the diameter is twice the radius
Autumn 3	Autumn 3	Summer 4	Summer 4	Summer 1	Summer 1

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
- recognise and name common 3 D shapes [for example, cuboids (including cubes), pyramids and spheres]	- recognise and name common 3 . D shapes [for example, cuboids (including cubes), pyramids and spheres] - compare and sort common 3-D shapes and everyday objects	- make 3-D shapes using modelling materials: recognise 3-D shapes in different orientations and describe them		- identify 3-D shapes, including cubes and other cuboids, from 2-D representations	- recognise, describe and build simple 3-D shapes, including making nets
Autumn 3	Autumn 3	Summer 4		Summer 1	Summer 1

Angles and lines

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- recognise angles as a property of shape or a description of a turn - identify right angles, recognise that two right angles make a make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle - identify horizontal and vertical lines and pairs of perpendicular and parallel lines	- identify acute and obtuse angles and compare and two right angles by size - identify lines of symmetry in 2-D shapes presented in different orientations complete a simple symmetric figure with respect to a specific line of symmetry	- know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles draw given angles, and measure them in degrees - identify: r angles at a point and one whole turn (total 360°) > angles at a point on a straight line and $\frac{1}{2}$ a turn (total 180°) - other multiples of 90°	- find unknown angles in any triangles, quadrilaterals, and regular polygons - recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
		Summer 4	Summer 4	Summer 2	Summer 1

Statistics

Present and interpret data

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- interpret and construct simple pictograms, tally charts, block diagrams and simple tables	- interpret and present data using bar charts, pictograms and tables	- interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	- complete, read and interpret information in tables, including timetables	- interpret and construct pie charts and line graphs and use these to solve problems
	Summer 3	Summer 5	Summer 5	Spring 5	Spring 6

Solve statistical problems

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- ask and answer simple questions by counting the number of objects in each category categories by quantity - ask and answer questions about totalling and comparing categorical data	- solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using presented in scaled bar charts and pictograms and tables	- solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	- solve comparison, sum and difference problems using information presented in a line graph	- calculate and interpret the mean as an average
	Summer 3	Summer 5	Summer 5	Spring 5	Spring 6

